Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 34
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
FEMS Microbes ; 5: xtad024, 2024.
Article de Anglais | MEDLINE | ID: mdl-38213393

RÉSUMÉ

Biofilm-forming cyanobacteria are abundant in mangrove ecosystems, colonizing various niches including sediment surface and periphyton where they can cover large areas, yet have received limited attention. Several filamentous isolates were recently isolated from Guadeloupe, illustrating the diversity and novelty present in these biofilms. In this study, nine strains belonging to three novel lineages found abundantly in Guadeloupe biofilms are characterized by genome sequencing, morphological and ultrastructural examination, metabolome fingerprinting and searched for secondary metabolites biosynthesis pathways. Assignation of two lineages to known genera is confirmed, namely Scytonema and Jaaginema. The third lineage corresponds to a new Coleofasciculales genus herein described as Karukerafilum gen. nov. The four strains belonging to this genus group into two subclades, one of which displays genes necessary for nitrogen fixation as well as the complete pathway for geosmin production. This study gives new insights into the diversity of mangrove biofilm-forming cyanobacteria, including genome-based description of a new genus and the first genome sequence available for the genus Jaaginema.

2.
FEMS Microbiol Lett ; 3702023 01 17.
Article de Anglais | MEDLINE | ID: mdl-37996396

RÉSUMÉ

Massive sequencing of the 16S rRNA gene has become a standard first step to describe and compare microbial communities from various samples. Parallel analysis of high numbers of samples makes it relevant to the statistical testing of the influence of natural or experimental factors and variables. However, these descriptions fail to document changes in community or ecosystem functioning. Nontargeted metabolomics are a suitable tool to bridge this gap, yet extraction protocols are different. In this study, prokaryotic community compositions are documented by 16S rRNA gene sequencing after direct DNA extraction or after metabolites extraction followed by DNA extraction. Results obtained using the V3-V4 region on nonaxenic cultures of cyanobacteria, lake water column, biofilm, and gut of wild and lab-reared fish indicate that prior extraction of metabolites does not influence the obtained image of prokaryotic communities. This validates sequential extraction of metabolites followed by DNA as a way to combine 16S rRNA sequencing with metabolome characterization from a single sample. This approach has the potential to complement community structure characterization with a proxy of their functioning, without the uncertainties associated with the use of separate samples.


Sujet(s)
Microbiote , , Animaux , ARN ribosomique 16S/génétique , Microbiote/génétique , Analyse de séquence d'ADN/méthodes , ADN bactérien/génétique
3.
Mol Ecol ; 32(24): 6824-6838, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37901963

RÉSUMÉ

Microorganisms are key contributors of aquatic biogeochemical cycles but their microscale ecology remains largely unexplored, especially interactions occurring between phytoplankton and microorganisms in the phycosphere, that is the region immediately surrounding phytoplankton cells. The current study aimed to provide evidence of the phycosphere taking advantage of a unique hypersaline, hyperalkaline ecosystem, Lake Dziani Dzaha (Mayotte), where two phytoplanktonic species permanently co-dominate: a cyanobacterium, Arthrospira fusiformis, and a green microalga, Picocystis salinarum. To assay phycospheric microbial diversity from in situ sampling, we set up a flow cytometry cell-sorting methodology for both phytoplanktonic populations, coupled with metabarcoding and comparative microbiome diversity. We focused on archaeal communities as they represent a non-negligible part of the phycospheric diversity, however their role is poorly understood. This work is the first which successfully explores in situ archaeal diversity distribution showing contrasted phycospheric compositions, with P. salinarum phycosphere notably enriched in Woesearchaeales OTUs while A. fusiformis phycosphere was enriched in methanogenic lineages affiliated OTUs such as Methanomicrobiales or Methanofastidiosales. Most archaeal OTUs, including Woesearchaeales considered in literature as symbionts, were either ubiquitous or specific of the free-living microbiome (i.e. present in the 3-0.2 µm fraction). Seminally, several archaeal OTUs were enriched from the free-living microbiome to the phytoplankton phycospheres, suggesting (i) either the inhibition or decrease of other OTUs, or (ii) the selection of specific OTUs resulting from the physical influence of phytoplanktonic species on surrounding Archaea.


Sujet(s)
Chlorophyta , Microbiote , Archéobactéries/génétique , Phytoplancton/génétique , Lacs/microbiologie , Microbiote/génétique , Phylogenèse , ARN ribosomique 16S/génétique
4.
J Appl Microbiol ; 134(8)2023 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-37558396

RÉSUMÉ

AIMS: The cyanobacterial genus, Limnospira (anc. Arthrospira Stizenberger ex Gomont 1892), commonly called "Spirulina", is widely used for commercial purposes because of its high protein content and beneficial probiotic metabolites. Thus, the taxonomy of this genus is important because of its consequences for food applications. METHODS AND RESULTS: We constructed a database with formation on all Limnospira strains plus new ones from 72 new French isolates. We used a polyphasic approach (phylogenetic, phylogenomic, presence or absence of coding DNA sequences, morphological, and ultrastructure analyses) to confirm that the species A. platensis belonged to the genus Limnospira (L. platensis Gomont comb. nov. Basionym. Arthrospira platensis Gomont 1892) and that the genus Limnospira was monospecific, only represented by L. platensis. CONCLUSIONS: This study highlighted the large intra-specific diversity of L. platensis, independent of the affiliations of the phylogenetic clades or geographical location of the habitats and the subsequent physiological and metabolic plasticity.


Sujet(s)
Variation génétique , Phylogenèse , Spirulina , Spirulina/classification
5.
Microorganisms ; 11(5)2023 May 17.
Article de Anglais | MEDLINE | ID: mdl-37317290

RÉSUMÉ

Microscopic filaments of the siphonous green algae Ostreobium (Ulvophyceae, Bryopsidales) colonize and dissolve the calcium carbonate skeletons of coral colonies in reefs of contrasted salinities. Here, we analyzed their bacterial community's composition and plasticity in response to salinity. Multiple cultures of Pocillopora coral-isolated Ostreobium strains from two distinct rbcL lineages representative of IndoPacific environmental phylotypes were pre-acclimatized (>9 months) to three ecologically relevant reef salinities: 32.9, 35.1, and 40.2 psu. Bacterial phylotypes were visualized for the first time at filament scale by CARD-FISH in algal tissue sections, within siphons, at their surface or in their mucilage. Ostreobium-associated microbiota, characterized by bacterial 16S rDNA metabarcoding of cultured thalli and their corresponding supernatants, were structured by host genotype (Ostreobium strain lineage), with dominant Kiloniellaceae or Rhodospirillaceae (Alphaproteobacteria, Rhodospirillales) depending on Ostreobium lineage, and shifted Rhizobiales' abundances in response to the salinity increase. A small core microbiota composed of seven ASVs (~1.5% of thalli ASVs, 19-36% cumulated proportions) was persistent across three salinities in both genotypes, with putative intracellular Amoebophilaceae and Rickettsiales_AB1, as well as Hyphomonadaceae and Rhodospirillaceae also detected within environmental (Ostreobium-colonized) Pocillopora coral skeletons. This novel knowledge on the taxonomic diversity of Ostreobium bacteria paves the way to functional interaction studies within the coral holobiont.

6.
ISME Commun ; 3(1): 57, 2023 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-37280295

RÉSUMÉ

Cyanobacteria are oxygenic photosynthetic bacteria that perform a substantial part of the global primary production. Some species are responsible for catastrophic environmental events, called blooms, which have become increasingly common in lakes and freshwater bodies as a consequence of global changes. Genotypic diversity is considered essential for marine cyanobacterial population, allowing it to cope with spatio-temporal environmental variations and to adapt to specific micro-niches in the ecosystem. This aspect is underestimated in the study of bloom development, however, and given little notice in studies of the ecology of harmful cyanobacteria. Here we compared the genomes of four strains of Aphanizomenon gracile, a species of filamentous toxinogenic cyanobacteria (Nostocales) found worldwide in fresh and brackish water. Millimeter-sized fascicles were isolated from a single water sample and have been maintained in culture since 2010. A comparative study revealed extensive heterogeneity in gene contents, despite similar genome size and high similarity indices. These variations were mainly associated with mobile genetic elements and biosynthetic gene clusters. For some of the latter, metabolomic analysis confirmed the production of related secondary metabolites, such as cyanotoxins and carotenoids, which are thought to play a fundamental role in the cyanobacterial fitness. Altogether, these results demonstrated that an A. gracile bloom could be a highly diverse population at low spatial scale and raised questions about potential exchanges of essential metabolites between individuals.

7.
Microbiome ; 11(1): 108, 2023 05 16.
Article de Anglais | MEDLINE | ID: mdl-37194081

RÉSUMÉ

BACKGROUND: Cyanobacterial blooms are one of the most common stressors encountered by metazoans living in freshwater lentic systems such as lakes and ponds. Blooms reportedly impair fish health, notably through oxygen depletion and production of bioactive compounds including cyanotoxins. However, in the times of the "microbiome revolution", it is surprising that so little is still known regarding the influence of blooms on fish microbiota. In this study, an experimental approach is used to demonstrate that blooms affect fish microbiome composition and functions, as well as the metabolome of holobionts. To this end, the model teleost Oryzias latipes is exposed to simulated Microcystis aeruginosa blooms of various intensities in a microcosm setting, and the response of bacterial gut communities is evaluated in terms of composition and metabolome profiling. Metagenome-encoded functions are compared after 28 days between control individuals and those exposed to highest bloom level. RESULTS: The gut bacterial community of O. latipes exhibits marked responses to the presence of M. aeruginosa blooms in a dose-dependent manner. Notably, abundant gut-associated Firmicutes almost disappear, while potential opportunists increase. The holobiont's gut metabolome displays major changes, while functions encoded in the metagenome of bacterial partners are more marginally affected. Bacterial communities tend to return to original composition after the end of the bloom and remain sensitive in case of a second bloom, reflecting a highly reactive gut community. CONCLUSION: Gut-associated bacterial communities and holobiont functioning are affected by both short and long exposure to M. aeruginosa, and show evidence of post-bloom resilience. These findings point to the significance of bloom events to fish health and fitness, including survival and reproduction, through microbiome-related effects. In the context of increasingly frequent and intense blooms worldwide, potential outcomes relevant to conservation biology as well as aquaculture warrant further investigation. Video Abstract.


Sujet(s)
Cyanobactéries , Microbiome gastro-intestinal , Microcystis , Oryzias , Animaux , Microcystis/physiologie , Cyanobactéries/génétique , Lacs/microbiologie , Métabolome , Oryzias/physiologie
8.
Environ Microbiol ; 25(3): 751-765, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36550062

RÉSUMÉ

The formation of intracellular amorphous calcium carbonates (iACC) has been recently observed in a few cultured strains of Microcystis, a potentially toxic bloom-forming cyanobacterium found worldwide in freshwater ecosystems. If iACC-forming Microcystis are abundant within blooms, they may represent a significant amount of particulate Ca. Here, we investigate the significance of iACC biomineralization by Microcystis. First, the presence of iACC-forming Microcystis cells has been detected in several eutrophic lakes, indicating that this phenomenon occurs under environmental conditions. Second, some genotypic (presence/absence of ccyA, a marker gene of iACC biomineralization) and phenotypic (presence/absence of iACC) diversity have been detected within a collection of strains isolated from one single lake. This illustrates that this trait is frequent but also variable within Microcystis even at a single locality. Finally, one-third of publicly available genomes of Microcystis were shown to contain the ccyA gene, revealing a wide geographic and phylogenetic distribution within the genus. Overall, the present work shows that the formation of iACC by Microcystis is common under environmental conditions. While its biological function remains undetermined, this process should be further considered regarding the biology of Microcystis and implications on the Ca geochemical cycle in freshwater environments.


Sujet(s)
Cyanobactéries , Microcystis , Microcystis/génétique , Phylogenèse , Écosystème , Lacs/microbiologie , Carbonate de calcium
9.
Microorganisms ; 10(12)2022 Nov 25.
Article de Anglais | MEDLINE | ID: mdl-36557590

RÉSUMÉ

Cyanobacteria constitute a pioneer colonizer of specific environments for whom settlement in new biotopes precedes the establishment of composite microbial consortia. Some heterotrophic bacteria constitute cyanobacterial partners that are considered as their cyanosphere, being potentially involved in mutualistic relationships through the exchange and recycling of key nutrients and the sharing of common goods. Several non-axenic cyanobacterial strains have been recently isolated, along with their associated cyanospheres, from the thermal mud of Balaruc-les-Bains (France) and the biofilms of the retention basin where they develop. The community structure and relationships among the members of the isolated cyanobacterial strains were characterized using a metagenomic approach combined with taxonomic and microscopic descriptions of the microbial consortia. The results provided insights into the potential role and metabolic capabilities of the microorganisms of thermal mud-associated cyanobacterial biofilms. Thus, the physical proximity, host-specificity, and genetic potential functions advocate for their complementarity between cyanobacteria and their associated microbiota. Besides these findings, our results also highlighted the great influence of the reference protein database chosen for performing functional annotation of the metagenomes from organisms of the cyanosphere and the difficulty of selecting one unique database that appropriately covers both autotroph and heterotroph metabolic specificities.

10.
Microorganisms ; 10(11)2022 Nov 17.
Article de Anglais | MEDLINE | ID: mdl-36422350

RÉSUMÉ

Oryzias latipes is an important model organism for physiology, genetics, and developmental studies, and has also emerged as a relevant vertebrate model for aquatic ecotoxicology. Knowledge regarding its associated microbiota on the other hand is still scarce and limited to adults, despite the relevance of the associated microbiome to the host's biology. This study provides the first insights into the establishment of bacterial microbiota during early developmental stages of laboratory-reared medaka using a 16S-rRNA-sequencing-based approach. Major shifts in community compositions are observed, from a Proteobacteria-dominated community in larvae and juveniles to a more phylum-diverse community towards adulthood, with no obvious difference between female and male specimens. Major bacterial taxa found in adults, including genera Cetobacterium and ZOR0006, establish progressively and are rare during early stages. Dominance shifts are comparable to those documented in another major model teleost, the zebrafish. Results from this study provide a basis for future work investigating the influence of medaka-associated bacteria during host development.

11.
Aquat Toxicol ; 253: 106329, 2022 Dec.
Article de Anglais | MEDLINE | ID: mdl-36274502

RÉSUMÉ

Blooms of toxic cyanobacteria are a common stress encountered by aquatic fauna. Evidence indicates that long-lasting blooms affect fauna-associated microbiota. Because of their multiple roles, host-associated microbes are nowadays considered relevant to ecotoxicology, yet the respective timing of microbiota versus functional changes in holobionts response needs to be clarified. The response of gut microbiota and holobiont's metabolome to exposure to a dense culture of Microcystis aeruginosa was investigated as a microcosm-simulated bloom in the model fish species Oryzias latipes (medaka). Both gut microbiota and gut metabolome displayed significant composition changes after only 2 days of exposure. A dominant symbiont, member of the Firmicutes, plummeted whereas various genera of Proteobacteria and Actinobacteriota increased in relative abundance. Changes in microbiota composition occurred earlier and faster compared to metabolome composition. Liver and muscle metabolome were much less affected than guts, supporting that the gut and associated microbiota are in the front row upon exposure. This study highlights that even short cyanobacterial blooms, that are increasingly frequent, trigger changes in microbiota composition and holobiont metabolome. It emphasizes the relevance of multi-omics approaches to explore organism's response to an ecotoxicological stress.


Sujet(s)
Cyanobactéries , Microbiome gastro-intestinal , Microcystis , Oryzias , Polluants chimiques de l'eau , Animaux , Oryzias/physiologie , Polluants chimiques de l'eau/toxicité , Métabolome
12.
Harmful Algae ; 117: 102285, 2022 08.
Article de Anglais | MEDLINE | ID: mdl-35944963

RÉSUMÉ

Cyanobacterial blooms can modify the dynamic of aquatic ecosystems and have harmful consequences for human activities. Moreover, cyanobacteria can produce a variety of cyanotoxins, including microcystins, but little is known about the role of environmental factors on the prevalence of microcystin producers in the cyanobacterial bloom dynamics. This study aimed to better understand the success of Planktothrix in various environments by unveiling the variety of strategies governing cell responses to sudden changes in light intensity and temperature. The cellular responses (photosynthesis, photoprotection, heat shock response and metabolites synthesis) of four Planktothrix strains to high-light or high-temperature were studied, focusing on how distinct ecotypes (red- or green-pigmented) and microcystin production capability affect cyanobacteria's ability to cope with such abiotic stimuli. Our results showed that high-light and high-temperature impact different cellular processes and that Planktothrix responses are heterogeneous, specific to each strain and thus, to genotype. The ability of cyanobacteria to cope with sudden increase in light intensity and temperature was not related to red- or green-pigmented ecotype or microcystin production capability. According to our results, microcystin producers do not cope better to high-light or high-temperature and microcystin content does not increase in response to such stresses.


Sujet(s)
Cyanobactéries , Planktothrix (genre) , Cyanobactéries/physiologie , Écosystème , Génotype , Humains , Température
13.
Microbiologyopen ; 11(2): e1278, 2022 04.
Article de Anglais | MEDLINE | ID: mdl-35478289

RÉSUMÉ

Given the increasing eutrophication of water bodies in Africa due to increasing anthropogenic pressures, data are needed to better understand the responses of phytoplankton communities to these changes in tropical lakes. These ecosystems are used by local human populations for multiple purposes, including fish and drinking water production, potentially exposing these populations to health threats if, for example, an increase in toxic cyanobacterial blooms is associated with increasing eutrophication. To test the short-term response of the phytoplankton community to the addition of nutrients (phosphorus and nitrogen, alone or in combination) and Nile tilapia, we developed an in situ mesocosm experiment in a freshwater lagoon located near Abidjan (Ivory Coast). We found that phytoplankton growth (estimated by chlorophyll-a quantification) was highly stimulated when both nitrogen and phosphorus were added, while there was no clear evidence for such colimitation by these two nutrients when considering their concentrations in the lagoon. Phytoplankton growth was accompanied by significant changes in the diversity and composition of this community and did not lead to an increase in the proportions of cyanobacteria. However, the addition of fish to some mesocosms resulted in a drastic decrease in phytoplankton biomass and a dominance of chlorophytes in this community. Finally, these experiments showed that the addition of nitrogen, alone or combined with phosphorus, stimulated microcystin production by cyanobacteria. In addition, no evidence of microcystin accumulation in the fish was found. Taken together, these data allow us to discuss strategies for controlling cyanobacterial blooms in this tropical ecosystem.


Sujet(s)
Cyanobactéries , Phytoplancton , Animaux , Côte d'Ivoire , Écosystème , Poissons , Lacs , Microcystines , Azote , Nutriments , Phosphore
14.
Microbiol Resour Announc ; 9(48)2020 Nov 25.
Article de Anglais | MEDLINE | ID: mdl-33239466

RÉSUMÉ

Microcystis aeruginosa is one of the major species that cause toxic cyanobacterial blooms in freshwater systems worldwide. Here, we report the draft genome sequence of M. aeruginosa PMC 728.11, a microcystin-producing cyanobacterium isolated from the freshwater reservoir of Juanon in Valence, France. The genome sequence contains 276 contigs, consisting of 5,536,025 bp and 5,594 putative protein-coding genes, among which are several biosynthetic gene clusters encoding enzyme complexes involved in the production of various bioactive and toxic metabolites.

15.
Aquat Toxicol ; 222: 105422, 2020 May.
Article de Anglais | MEDLINE | ID: mdl-32112996

RÉSUMÉ

The proliferations of cyanobacteria are increasingly prevalent in many rivers and water bodies due especially to eutrophication. This work aims to study in female medaka fish the toxicity, the transfer and the depuration of the anatoxin-a, a neurotoxin produced by benthic cyanobacterial biofilms. This work will provide answers regarding acute toxicity induced by single gavage by anatoxin-a and to the risks of exposure by ingestion of contaminated fish flesh, considering that data on these aspects remain particularly limited. The oral LD50 and NOAEL of a single dose of (±)-anatoxin-a were determined at 11.50 and 6.67 µg.g-1, respectively. Subsequently, the toxico-kinetics of the (±)-anatoxin-a was observed in the guts, the livers and the muscles of female medaka fish for 10 days. Anatoxin-a was quantified by high-resolution qTOF mass spectrometry coupled upstream to a UHPLC chromatographic chain. The toxin could not be detected in the liver after 12 h, and in the gut and muscle after 3 days. Overall, the medaka fish do not appear to accumulate (±)-anatoxin-a and to largely recover after 24 h following a single sub-acute oral liquid exposure at the NOAEL.


Sujet(s)
Toxines de la flore et de la faune marines/toxicité , Neurotoxines/toxicité , Oryzias/métabolisme , Tropanes/toxicité , Polluants chimiques de l'eau/toxicité , Animaux , Cyanobactéries/métabolisme , Toxines de cyanobactéries , Eutrophisation , Femelle , Tube digestif/effets des médicaments et des substances chimiques , Tube digestif/métabolisme , Dose létale 50 , Foie/effets des médicaments et des substances chimiques , Foie/métabolisme , Toxines de la flore et de la faune marines/métabolisme , Modèles théoriques , Muscles/effets des médicaments et des substances chimiques , Muscles/métabolisme , Neurotoxines/métabolisme , Dose sans effet nocif observé , Rivières/composition chimique , Toxicocinétique , Tropanes/métabolisme , Polluants chimiques de l'eau/métabolisme
16.
Biomolecules ; 11(1)2020 12 29.
Article de Anglais | MEDLINE | ID: mdl-33383796

RÉSUMÉ

Background: The Balaruc-les-Bains' thermal mud was found to be colonized predominantly by microorganisms, with cyanobacteria constituting the primary organism in the microbial biofilm observed on the mud surface. The success of cyanobacteria in colonizing this specific ecological niche can be explained in part by their taxa-specific adaptation capacities, and also the diversity of bioactive natural products that they synthesize. This array of components has physiological and ecological properties that may be exploited for various applications. Methods: Nine cyanobacterial strains were isolated from Balaruc thermal mud and maintained in the Paris Museum Collection (PMC). Full genome sequencing was performed coupled with targeted and untargeted metabolomic analyses (HPLC-DAD and LC-MS/MS). Bioassays were performed to determine antioxidant, anti-inflammatory, and wound-healing properties. Results: Biosynthetic pathways for phycobiliproteins, scytonemin, and carotenoid pigments and 124 metabolite biosynthetic gene clusters (BGCs) were characterized. Several compounds with known antioxidant or anti-inflammatory properties, such as carotenoids, phycobilins, mycosporine-like amino acids, and aeruginosins, and other bioactive metabolites like microginins, microviridins, and anabaenolysins were identified. Secretion of the proinflammatory cytokines TNF-α, IL-1ß, IL-6, and IL-8 appeared to be inhibited by crude extracts of Planktothricoides raciborskii PMC 877.14, Nostoc sp. PMC 881.14, and Pseudo-chroococcus couteii PMC 885.14. The extract of the Aliinostoc sp. PMC 882.14 strain was able to slightly enhance migration of HaCat cells that may be helpful in wound healing. Several antioxidant compounds were detected, but no significant effects on nitric oxide secretion were observed. There was no cytotoxicity on the three cell types tested, indicating that cyanobacterial extracts may have anti-inflammatory therapeutic potential without harming body cells. These data open up promising uses for these extracts and their respective molecules in drugs or thermal therapies.


Sujet(s)
Anti-inflammatoires/composition chimique , Antioxydants/composition chimique , Produits biologiques/composition chimique , Cyanobactéries/composition chimique , Pélothérapie , Cicatrisation de plaie/effets des médicaments et des substances chimiques , Animaux , Anti-inflammatoires/isolement et purification , Anti-inflammatoires/pharmacologie , Antioxydants/isolement et purification , Antioxydants/pharmacologie , Produits biologiques/isolement et purification , Produits biologiques/pharmacologie , Lignée cellulaire , Mouvement cellulaire/effets des médicaments et des substances chimiques , Cyanobactéries/génétique , France , Génome bactérien , Humains , Souris , Cellules RAW 264.7
17.
Mar Drugs ; 18(1)2019 Dec 23.
Article de Anglais | MEDLINE | ID: mdl-31878034

RÉSUMÉ

Benthic cyanobacteria strains from Guadeloupe have been investigated for the first time by combining phylogenetic, chemical and biological studies in order to better understand the taxonomic and chemical diversity as well as the biological activities of these cyanobacteria through the effect of their specialized metabolites. Therefore, in addition to the construction of the phylogenetic tree, indicating the presence of 12 potentially new species, an LC-MS/MS data analysis workflow was applied to provide an overview on chemical diversity of 20 cyanobacterial extracts, which was linked to antimicrobial activities evaluation against human pathogenic and ichtyopathogenic environmental strains.


Sujet(s)
Produits biologiques/pharmacologie , Cyanobactéries/composition chimique , Cyanobactéries/génétique , Bactéries à Gram négatif/effets des médicaments et des substances chimiques , Phylogenèse , Antibactériens , Anti-infectieux , Guadeloupe , Zones humides
18.
PLoS One ; 14(9): e0222029, 2019.
Article de Anglais | MEDLINE | ID: mdl-31490972

RÉSUMÉ

Efficient RNA extraction methods are needed to study transcript regulation. Such methods must lyse the cell without degrading the genetic material. For cyanobacteria this can be particularly challenging because of the presence of the cyanobacteria cell envelope. The great breath of cyanobacterial shape and size (unicellular, colonial, or filamentous multicellular) created a variety of cell lysis methods. However, there is still a lack of reliable techniques for nucleic acid extraction for several types of cyanobacteria. Here we designed and tested 15 extraction methods using physical, thermic or chemical stress on the filamentous cyanobacteria Planktothrix agardhii. Techniques based on the use of beads, sonication, and heat shock appeared to be too soft to break the Planktothrix agardhii cell envelope, whereas techniques based on the use of detergents degraded the cell envelope but also the RNA. Two protocols allowed to successfully obtain good-quality RNA. The first protocol consisted to manually crush the frozen cell pellet with a pestle and the second was based on the use of high-intensity ultra-sonication. When comparing these two, the high-intensity ultra-sonication protocol was less laborious, faster and allowed to extract 3.5 times more RNA compared to the liquid nitrogen pestle protocol. The high-intensity ultra-sonication protocol was then tested on five Planktothrix strains, this protocol allowed to obtain >8.5 µg of RNA for approximatively 3.5 × 108 cells. The extracted RNA were characterized by 260/280 and 260/230 ratio > to 2, indicating that the samples were devoid of contaminant, and RNA Quality Number > to 7, meaning that the integrity of RNA was preserved with this extraction method. In conclusion, the method we developed based on high-intensity ultra-sonication proved its efficacy in the extraction of Planktothrix RNA and could be helpful for other types of samples.


Sujet(s)
Fractionnement chimique/méthodes , Cyanobactéries/génétique , ARN bactérien/isolement et purification , Sonication , Substances tampon , Guanidines/composition chimique , Phénols/composition chimique , Réaction de polymérisation en chaîne , ARN bactérien/composition chimique , ARN bactérien/génétique
19.
Toxins (Basel) ; 11(9)2019 08 27.
Article de Anglais | MEDLINE | ID: mdl-31461939

RÉSUMÉ

Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with diverse chemical structures and potent biological activities and toxicities. The chemical identification of these compounds remains a major bottleneck. Strategies that can prioritize the most prolific strains and novel compounds are of great interest. Here, we combine chemical analysis and genomics to investigate the chemodiversity of secondary metabolites based on their pattern of distribution within some cyanobacteria. Planktothrix being a cyanobacterial genus known to form blooms worldwide and to produce a broad spectrum of toxins and other bioactive compounds, we applied this combined approach on four closely related strains of Planktothrix. The chemical diversity of the metabolites produced by the four strains was evaluated using an untargeted metabolomics strategy with high-resolution LC-MS. Metabolite profiles were correlated with the potential of metabolite production identified by genomics for the different strains. Although, the Planktothrix strains present a global similarity in terms of a biosynthetic cluster gene for microcystin, aeruginosin, and prenylagaramide for example, we found remarkable strain-specific chemodiversity. Only few of the chemical features were common to the four studied strains. Additionally, the MS/MS data were analyzed using Global Natural Products Social Molecular Networking (GNPS) to identify molecular families of the same biosynthetic origin. In conclusion, we depict an efficient, integrative strategy for elucidating the chemical diversity of a given genus and link the data obtained from analytical chemistry to biosynthetic genes of cyanobacteria.


Sujet(s)
Cyanobactéries/métabolisme , Génomique/méthodes , Métabolomique/méthodes , Microcystines/génétique , Famille multigénique , Métabolisme secondaire , Biodiversité , Cyanobactéries/génétique , Microcystines/biosynthèse , Planktothrix (genre) , Métabolisme secondaire/génétique
20.
Front Microbiol ; 10: 791, 2019.
Article de Anglais | MEDLINE | ID: mdl-31057509

RÉSUMÉ

Cyanobacteria are photosynthetic prokaryotes capable of synthesizing a large variety of secondary metabolites that exhibit significant bioactivity or toxicity. Microcystis constitutes one of the most common cyanobacterial genera, forming the intensive blooms that nowadays arise in freshwater ecosystems worldwide. Species in this genus can produce numerous cyanotoxins (i.e., toxic cyanobacterial metabolites), which can be harmful to human health and aquatic organisms. To better understand variations in cyanotoxin production between clones of Microcystis species, we investigated the diversity of 24 strains isolated from the same blooms or from different populations in various geographical areas. Strains were compared by genotyping with 16S-ITS fragment sequencing and metabolite chemotyping using LC ESI-qTOF mass spectrometry. While genotyping can help to discriminate among different species, the global metabolome analysis revealed clearly discriminating molecular profiles among strains. These profiles could be clustered primarily according to their global metabolite content, then according to their genotype, and finally according to their sampling location. A global molecular network of all metabolites produced by Microcystis species highlights the production of a wide set of chemically diverse metabolites, including a few microcystins, many aeruginosins, microginins, cyanopeptolins, and anabaenopeptins, together with a large set of unknown molecules. These components, which constitute the molecular biodiversity of Microcystis species, still need to be investigated in terms of their structure and potential bioactivites (e.g., toxicity).

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...